45 research outputs found

    A 7 Tesla fMRI Study of Amygdala Responses to Fearful Faces

    Get PDF
    The amygdalae are involved in the perception of emotions such as happiness, anger and fear. Because of their proximity to the sinuses, the image signal intensity in T2* weighted fMRI data is often affected by signal loss due to through-slice dephasing, especially at high field strength. In this study, the feasibility of fMRI in the amygdalae at 7 Tesla was investigated. A paradigm based on the presentation of fearful faces was used for stimulation. Previously, opposite effects have been found for presentation of averted and direct gaze fearful faces. Here, we show that (1) sufficiently high temporal SNR values are reached in the amygdalae for detection of small BOLD signal changes and (2) that the BOLD signal in the amygdalae for presentation of a direct or averted gaze in a fearful face depends on stimulus duration

    Perception of Social Cues of Danger in Autism Spectrum Disorders

    Get PDF
    Intuitive grasping of the meaning of subtle social cues is particularly affected in autism spectrum disorders (ASD). Despite their relevance in social communication, the effect of averted gaze in fearful faces in conveying a signal of environmental threat has not been investigated using real face stimuli in adults with ASD. Here, using functional MRI, we show that briefly presented fearful faces with averted gaze, previously shown to be a strong communicative signal of environmental danger, produce different patterns of brain activation than fearful faces with direct gaze in a group of 26 normally intelligent adults with ASD compared with 26 matched controls. While implicit cue of threat produces brain activation in attention, emotion processing and mental state attribution networks in controls, this effect is absent in individuals with ASD. Instead, individuals with ASD show activation in the subcortical face-processing system in response to direct eye contact. An effect of differences in looking behavior was excluded in a separate eye tracking experiment. Our data suggest that individuals with ASD are more sensitive to direct eye contact than to social signals of danger conveyed by averted fearful gaze

    Increased in vivo glial activation in patients with amyotrophic lateral sclerosis: Assessed with [11C]-PBR28

    Get PDF
    Evidence from human post mortem, in vivo and animal model studies implicates the neuroimmune system and activated microglia in the pathology of amyotrophic lateral sclerosis. The study aim was to further evaluate in vivo neuroinflammation in individuals with amyotrophic lateral sclerosis using [11C]-PBR28 positron emission tomography. Ten patients with amyotrophic lateral sclerosis (seven males, three females, 38–68 years) and ten age- and [11C]-PBR28 binding affinity-matched healthy volunteers (six males, four females, 33–65 years) completed a positron emission tomography scan. Standardized uptake values were calculated from 60 to 90 min post-injection and normalized to whole brain mean. Voxel-wise analysis showed increased binding in the motor cortices and corticospinal tracts in patients with amyotrophic lateral sclerosis compared to healthy controls (pFWE < 0.05). Region of interest analysis revealed increased [11C]-PBR28 binding in the precentral gyrus in patients (normalized standardized uptake value = 1.15) compared to controls (1.03, p < 0.05). In patients those values were positively correlated with upper motor neuron burden scores (r = 0.69, p < 0.05), and negatively correlated with the amyotrophic lateral sclerosis functional rating scale (r = –0.66, p < 0.05). Increased in vivo glial activation in motor cortices, that correlates with phenotype, complements previous histopathological reports. Further studies will determine the role of [11C]-PBR28 as a marker of treatments that target neuroinflammation

    Pupillary contagion in autism

    No full text
    Pupillary contagion is an involuntary change in the observer’s pupil size in response to the pupil size of another person. This effect, presumed to be an important adaption for individuals living in groups, has been documented in both typical infants and adults. Here, for the first time, we report pupillary contagion in individuals with autism, a disorder of social communication. We found that, compared with a typical group (n = 63), individuals with autism (n = 54) exhibited comparable pupillary contagion when observing pictures of emotional faces, despite less spontaneous attention toward the eye region. Furthermore, the magnitude of the pupillary response in the autism group was negatively correlated with time spent fixating the eye region. The results suggest that even with less looking toward the eyes, individuals with autism respond to the affective and arousal levels transmitted from other individuals. These results are discussed in the context of an overarousal account of socioaffective-processing differences in autism

    Hypersensitivity to low intensity fearful faces in autism when fixation is constrained to the eyes

    No full text
    Previous studies that showed decreased brain activation in people with autism spectrum disorder (ASD) viewing expressive faces did not control that participants looked in the eyes. This is problematic because ASD is characterized by abnormal attention to the eyes. Here, we collected fMRI data from 48 participants (27 ASD) viewing pictures of neutral faces and faces expressing anger, happiness, and fear at low and high intensity, with a fixation cross between the eyes. Group differences in whole brain activity were examined for expressive faces at high and low intensity versus neutral faces. Group differences in neural activity were also investigated in regions of interest within the social brain, including the amygdala and the ventromedial prefrontal cortex (vmPFC). In response to low intensity fearful faces, ASD participants showed increased activation in the social brain regions, and decreased functional coupling between the amygdala and the vmPFC. This oversensitivity to low intensity fear coupled with a lack of emotional regulation capacity could indicate an excitatory/inhibitory imbalance in their socio‐affective processing system. This may result in social disengagement and avoidance of eye‐contact to handle feelings of strong emotional reaction. Our results also demonstrate the importance of careful control of gaze when investigating emotional processing in ASD. Hum Brain Mapp 38:5943–5957, 2017

    Differences in white matter reflect atypical developmental trajectory in autism: A Tract-based Spatial Statistics study

    Get PDF
    AbstractAutism is a neurodevelopmental disorder in which white matter (WM) maturation is affected. We assessed WM integrity in 16 adolescents and 14 adults with high-functioning autism spectrum disorder (ASD) and in matched neurotypical controls (NT) using diffusion weighted imaging and Tract-based Spatial Statistics. Decreased fractional anisotropy (FA) was observed in adolescents with ASD in tracts involved in emotional face processing, language, and executive functioning, including the inferior fronto-occipital fasciculus and the inferior and superior longitudinal fasciculi. Remarkably, no differences in FA were observed between ASD and NT adults.We evaluated the effect of age on WM development across the entire age range. Positive correlations between FA values and age were observed in the right inferior fronto-occipital fasciculus, the left superior longitudinal fasciculus, the corpus callosum, and the cortical spinal tract of ASD participants, but not in NT participants.Our data underscore the dynamic nature of brain development in ASD, showing the presence of an atypical process of WM maturation, that appears to normalize over time and could be at the basis of behavioral improvements often observed in high-functioning autism
    corecore